Robust cell-level control of large battery packs

Approach and Vision

- Achieve cost-effective dynamic cell-level control and diagnostics
- Drive cells to non-conservative physical limits and homogeneous end-of-life
- Improve energy/power utilization, lifetime, reliability, safety

Today's Battery System

Uncertain battery state

worsens with age

Proposed Battery System

Efficient, fast differential cell-power processing

Electrochemical MPC reduces conservative limits and extends low temperature cell rate-capability

All energy of disparate cells is available. Cell inhomogeneity decreases with age

Improved knowledge of battery electrochemical state

Cost-Benefit Analysis and Life-Prognostic Modeling

Problem: Packs with well-matched cells may grow to 10% capacity imbalance over 10 years (model prediction)

Solution: Cost neutral active balancing system. Displaces HV-12V DC-DC

- Benefit Utilization: Active balancing allows full utilization of cell energy
- Benefit Lifetime: Removing limitation of weakest cell can extend life
 - ► 20% for PHEV
 - ▶ 40%-80%* for BEV75 (*passively cooled pack)
 - ▶ 35% for grid applications and automotive 2nd use
- Benefit Pack thermal design: Eliminates the need for expensive thermal management that tightly controls cell-to-cell temperature differences
- Benefit Performance: Heterogeneous cell control and electrochemical MPC co-optimize power delivery and lifetime

Validation: 12 month pack aging test with A/B comparison of passive/active balancing hardware employing heterogeneous cell control

System Architecture

- Low-cost isolated bypass DC/DC converter modules connect each cell to the vehicle 12 V bus
- Cell balancing is achieved by differentially supplying current demanded by the 12 V bus
- Packaging and wiring is simplified with parallel connection to 12 V bus and single digital communication line for all data

Battery Cell	
Capacity	25 Ah
Series Resistance	~ 1 mΩ

Bypass Converter	
Power Rating	30 W
Peak Efficiency	93 %

Electrochemical Model-Predictive Control

- Improve lithium ion battery performance with model predictive control(MPC) using physics-based electrochemical models to achieve battery performance closer to theoretical limits
- Generate simple yet highly accurate reduced-order cell models amenable to fast computation
- Identify internal physical and electrochemical parameters via experimentation to populate models

Team Partners

Isolated

Bypass

Isolated

Bypass

Isolated

Bypass

Battery Pack Integration with Bypass Converters

Experimental Validation and Program Status

Pack level results with heterogeneous cell control ပီ 40 Charge Cycle (15 A Constant Current) Discharge Cycle (US06 drive cycles)

Completed (Years 1 – 2)

- Hardware development and pack level integration
- Heterogeneous cell control algorithm development and integration with hardware
- Initial electrochemical model parameter identification and MPC simulation

Year 3 Plan

- Launch new Partner Program to provide industry feedback
- Validate heterogeneous cell control through long term pack aging
- Further develop electrochemical MPC and perform cell-level hardware validation
- Develop cost-constrained control algorithms and hardware
- Demonstrate combined heterogeneous cell control and MPC at the pack level